Machine Learning

K-Means聚类算法详解

前言 K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优...
阅读全文
Machine Learning

CNN中pooling层的作用

1、pooling是在卷积网络(CNN)中一般在卷积层(conv)之后使用的特征提取层,使用pooling技术将卷积层后得到的小邻域内的特征点整合得到新的特征。一方面防止无用参数增加时间复杂度,一方面...
阅读全文
Machine Learning

Transformer及其变种

简介 近年来NLP领域最让人印象深刻的成果,无疑是以谷歌提出的Bert为代表的预训练模型了。它们不断地刷新记录(无论是任务指标上,还是算力需求上),在很多任务上已经能超越人类平均水平,还具有非常良好的...
阅读全文
Machine Learning

卷积神经网络科普

卷积神经网络(Convolutional Neueal Networks,简称CNN)可以说是神经网路模型中的"网红"网络框架,在计算机视觉方面贡献很大。卷积神经网络中的核心基础,涉及卷积层、池化层、...
阅读全文
Machine Learning

卷积神经网络结构组成与解释

卷积神经网络是以卷积层为主的深度网路结构,网络结构包括有卷积层、激活层、BN层、池化层、FC层、损失层等。卷积操作是对图像和滤波矩阵做内积(元素相乘再求和)的操作。1. 卷积层 常见的卷积操作如下: ...
阅读全文