当谈到基于RNN(循环神经网络)的机器学习例子时,一个常见的任务是文本生成。RNN是一种能够处理序列数据的神经网络,它具有记忆能力。以下是一个基于RNN的文本生成例子,并给每一行添加了详细注释: im...
深度学习教程之基于代码一步一步教你机器学习中多层感知器(MLP)的原理
当谈到基于MLP(多层感知器)的机器学习例子时,一个常见的任务是使用MLP对手写数字进行分类。MLP是一种前馈神经网络,它由多个全连接层组成。以下是一个基于MLP的手写数字分类例子,并给每一行添加了详...
深度学习教程之基于代码一步一步教你深度学习中卷积神经网络(CNN)的原理
当谈到基于CNN的深度学习例子时,图像分类是最常见的任务之一。CNN(卷积神经网络)在图像处理任务中表现出色,能够自动学习图像的特征表示。以下是一个基于CNN的图像分类示例,并给每一行添加了注释: i...
使用PyTorch的DataLoader的简单示例
首先上代码: import torch from torch.utils.data import Dataset, DataLoader # 自定义数据集类 class MyDataset(Datas...
一维数组的聚类
在学习聚类算法的过程中,学习到的聚类算法大部分都是针对n维的,针对一维数据的聚类方式较少,今天就来学习下如何给一维的数据进行聚类。 方案一:采用K-Means对一维数据聚类 Python代码如下: f...
深入卷积神经网络背后的数学原理
【导读】在计算机神经视觉技术的发展过程中,卷积神经网络成为了其中的重要组成部分,本文对卷积神经网络的数学原理进行了介绍。 文章包括四个主要内容:卷积、卷积层、池化层以及卷积神经网络中的反向传播原理。在...
Pytorch在训练时冻结某些层使其不参与训练
我们知道,深度学习网络中的参数是通过计算梯度,在反向传播进行更新的,从而能得到一个优秀的参数,但是有的时候,我们想固定其中的某些层的参数不参与反向传播。比如说,进行微调时,我们想固定已经加载预训练模型...
KMeans中自动K值的确认方法
1 前言 聚类常用于数据探索或挖掘前期,在没有做先验经验的背景下做的探索性分析,也适用于样本量较大情况下的数据预处理等方面工作。例如针对企业整体用户特征,在未得到相关知识或经验之前先根据数据本身特点...
聚类算法——k均值和层次聚类
看看下面这张图,有各种各样的虫子和蜗牛,你试试将它们分成不同的组别? 完成了吗?尽管这里并不一定有所谓的「正确答案」,但一般来说我们可以将这些虫子分成四组:蜘蛛、蜗牛、蝴蝶/飞蛾、蜜蜂/黄蜂。 很简单...
聚类分析:k-means和层次聚类
尽管我个人非常不喜欢人们被划分圈子,因为这样就有了歧视、偏见、排挤和矛盾,但“物以类聚,人以群分”确实是一种客观的现实——这其中就蕴含着聚类分析的思想。 前面所提到的机器学习算法主要都是分类和回归,这...