一、引子————边界检测 我们来看一个最简单的例子:“边界检测(edge detection)”,假设我们有这样的一张图片,大小8×8: 图片中的数字代表该位置的像素值,我们知道,像素值越大,颜色越亮...
直白介绍卷积神经网络
什么是卷积神经网络,它为何重要? 卷积神经网络(也称作 ConvNets 或 CNN)是神经网络的一种,它在图像识别和分类等领域已被证明非常有效。 卷积神经网络除了为机器人和自动驾驶汽车的视觉助力之外...
卷积神经网络中的softmax,softmax loss和cross entropy的讲解
我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caf...
谈谈深度学习中的 Batch_Size
首先,为什么需要有 Batch_Size 这个参数? Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Full Batch Learning )的形式,这样做至...
卷积神经网络术语:梯度下降、Epoch、Batch Size和迭代
你肯定经历过这样的时刻,看着电脑屏幕抓着头,困惑着:「为什么我会在代码中使用这四个术语,它们有什么区别吗?」因为它们看起来实在太相似了。 为了理解这些术语有什么不同,你需要了解一些关于机器学习的术语,...
神经网络术语:Epoch、Batch Size和迭代
batchsize:中文翻译为批大小(批尺寸)。 简单点说,批量大小将决定我们一次训练的样本数目。 batch_size将影响到模型的优化程度和速度。 为什么需要有 Batch_Size : batc...
卷积神经网络(CNN)学习笔记:模型训练
上篇博文主要对CNN的基本网络结构及连接方式做了简单的介绍,还介绍了一个界内经典的LeNet-5模型。下面重点介绍CNN模型的训练过程/参数学习,在阅读本文之前,最好需要有以下方面的预备知识: 神经网...
卷积神经网络入门
卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的...
卷积神经网络CNN斯坦福教程
卷积神经网络 (CNNs / ConvNets) 卷积神经网络和上一章讲的常规神经网络非常相似:它们都是由神经元组成,神经元中有具有学习能力的权重和偏差。每个神经元都得到一些输入数据,进行内积运算后再...
卷积神经网络(CNN)的参数优化方法
著名: 本文是从 Michael Nielsen的电子书Neural Network and Deep Learning的深度学习那一章的卷积神经网络的参数优化方法的一些总结和摘录,并不是我自己的结论...