ROC和AUC平时用的比较多,但是其真正的原理和计算过程却了解的不多,因此做个整理 照抄自网上的一个例子,加深下理解: 比方说在一个10000个人的数据集中,有100个人得了某种病症,你的任务是来预测...
ROC和AUC介绍以及如何计算AUC
ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣。这篇博文简单介绍ROC和AUC的特点,以...
常用的模型评估指标
“没有测量,就没有科学。”这是科学家门捷列夫的名言。 在计算机科学中,特别是在机器学习的领域,对模型的测量和评估同样至关重要。只有选择与问题相匹配的评估方法,我们才能够快速的发现在模型选择和训练过程中...
机器学习算法性能评估常用指标总结
考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),...
AUC的计算方法及相关总结
一、roc曲线 1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。 横轴:负正类率(false pos...
分类性能度量指标 : ROC曲线、AUC值、正确率、召回率
在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵...
ROC与AUC的定义与使用详解
分类模型评估: 指标 描述 Scikit-learn函数 Precision 精准度 from sklearn.metrics import precision_score Recall 召回率 fr...