R绘图基础(7)综合应用

1、点阵图加两方向柱状图

  1. > def.par <- par(no.readonly = TRUE) # save default, for resetting...
  2. >
  3. > x <- pmin(3, pmax(-3, rnorm(50)))
  4. > y <- pmin(3, pmax(-3, rnorm(50)))
  5. > xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)
  6. > yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)
  7. > top <- max(c(xhist$counts, yhist$counts))
  8. > xrange <- c(-3,3)
  9. > yrange <- c(-3,3)
  10. > nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
  11. > #layout.show(nf)
  12. >
  13. > par(mar=c(3,3,1,1))
  14. > plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")
  15. > par(mar=c(0,3,1,1))
  16. > barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
  17. > par(mar=c(3,0,1,1))
  18. > barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)
  19. >
  20. > par(def.par)

R绘图基础(7)综合应用-图片1

点阵+柱状

2、带误差的点线图

  1. > # Clustered Error Bar for Groups of Cases.
  2. > # Example: Experimental Condition (Stereotype Threat Yes/No) x Gender (Male / Female)
  3. > # The following values would be calculated from data and are set fixed now for
  4. > # code reproduction
  5. >
  6. > means.females <- c(0.08306698, -0.83376319)
  7. > stderr.females <- c(0.13655378, 0.06973371)
  8. >
  9. > names(means.females) <- c("No","Yes")
  10. > names(stderr.females) <- c("No","Yes")
  11. >
  12. > means.males <- c(0.4942997, 0.2845608)
  13. > stderr.males <- c(0.07493673, 0.18479661)
  14. >
  15. > names(means.males) <- c("No","Yes")
  16. > names(stderr.males) <- c("No","Yes")
  17. >
  18. > # Error Bar Plot
  19. >
  20. > library (gplots)
  21. >
  22. > # Draw the error bar for female experiment participants:
  23. > plotCI(x = means.females, uiw = stderr.females, lty = 2, xaxt ="n", xlim = c(0.5,2.5), ylim = c(-1,1), gap = 0, ylab="Microworld Performance (Z Score)", xlab="Stereotype Threat", main = "Microworld performance over experimental conditions")
  24. >
  25. > # Add the males to the existing plot
  26. > plotCI(x = means.males, uiw = stderr.males, lty = 1, xaxt ="n", xlim = c(0.5,2.5), ylim = c(-1,1), gap = 0, add = TRUE)
  27. >
  28. > # Draw the x-axis (omitted above)
  29. > axis(side = 1, at = 1:2, labels = names(stderr.males), cex = 0.7)
  30. >
  31. > # Add legend for male and female participants
  32. > legend(2,1,legend=c("Male","Female"),lty=1:2)

R绘图基础(7)综合应用-图片2

误差图

误差绘图plotCI加强版是plotmeans,具体可使用?plotmeans来试用它。这里就不多讲了。

3、带误差的柱状图。

还是使用gplots包

  1. > library(gplots)
  2. > # Example with confidence intervals and grid
  3. > hh <- t(VADeaths)[, 5:1]
  4. > mybarcol <- "gray20"
  5. > ci.l <- hh * 0.85
  6. > ci.u <- hh * 1.15
  7. > mp <- barplot2(hh, beside = TRUE,
  8. + col = c("lightblue", "mistyrose",
  9. + "lightcyan", "lavender"),
  10. + legend = colnames(VADeaths), ylim = c(0, 100),
  11. + main = "Death Rates in Virginia", font.main = 4,
  12. + sub = "Faked 95 percent error bars", col.sub = mybarcol,
  13. + cex.names = 1.5, plot.ci = TRUE, ci.l = ci.l, ci.u = ci.u,
  14. + plot.grid = TRUE)
  15. > mtext(side = 1, at = colMeans(mp), line = 2,
  16. + text = paste("Mean", formatC(colMeans(hh))), col = "red")
  17. > box()

R绘图基础(7)综合应用-图片3

带误差的柱状图

4、漂亮的箱线图

  1. > require(gplots) #for smartlegend
  2. >
  3. > data(ToothGrowth)
  4. > boxplot(len ~ dose, data = ToothGrowth,
  5. + boxwex = 0.25, at = 1:3 - 0.2,
  6. + subset= supp == "VC", col="yellow",
  7. + main="Guinea Pigs' Tooth Growth",
  8. + xlab="Vitamin C dose mg",
  9. + ylab="tooth length", ylim=c(0,35))
  10. > boxplot(len ~ dose, data = ToothGrowth, add = TRUE,
  11. + boxwex = 0.25, at = 1:3 + 0.2,
  12. + subset= supp == "OJ", col="orange")
  13. >
  14. > smartlegend(x="left",y="top", inset = 0,
  15. + c("Ascorbic acid", "Orange juice"),
  16. + fill = c("yellow", "orange"))

R绘图基础(7)综合应用-图片4

箱线图

5、基因芯片热图,

具体参考http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/heatmap/

  1. > library("ALL")
  2. > data("ALL")
  3. > eset <- ALL[, ALL$mol.biol %in% c("BCR/ABL", "ALL1/AF4")]
  4. > library("limma")
  5. > f <- factor(as.character(eset$mol.biol))
  6. > design <- model.matrix(~f)
  7. > fit <- eBayes(lmFit(eset,design))
  8. > selected <- p.adjust(fit$p.value[, 2]) <0.005
  9. > esetSel <- eset [selected, ]
  10. > color.map <- function(mol.biol) { if (mol.biol=="ALL1/AF4") "#FF0000" else "#0000FF" }
  11. > patientcolors <- unlist(lapply(esetSel$mol.bio, color.map))
  12. > library("gplots")
  13. > heatmap.2(exprs(esetSel), col=redgreen(75), scale="row", ColSideColors=patientcolors,
  14. + key=TRUE, symkey=FALSE, density.info="none", trace="none", cexRow=0.5)

 

发表评论

匿名网友

拖动滑块以完成验证
加载失败