安装及加载ggpubr包
安装方式有两种:
- 直接从CRAN安装:
install.packages("ggpubr")
- 从GitHub上安装最新版本:
if(!require(devtools)) install.packages("devtools") devtools::install_github("kassambara/ggpubr")
安装完之后直接加载就行:
library(ggpubr)
ggpubr可绘制图形
ggpubr可绘制大部分我们常用的图形,下面一一介绍。
分布图(Distribution)
#构建数据集set.seed(1234) df <- data.frame( sex=factor(rep(c("f", "M"), each=200)), weight=c(rnorm(200, 55), rnorm(200, 58))) head(df) ## sex weight ## 1 f 53.79293 ## 2 f 55.27743 ## 3 f 56.08444 ## 4 f 52.65430 ## 5 f 55.42912 ## 6 f 55.50606
密度分布图以及边际地毯线并添加平均值线
ggdensity(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex", palette = c("#00AFBB", "#E7B800"))
带有均值线和边际地毯线的直方图
gghistogram(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex", palette = c("#00AFBB", "#E7B800"))
箱线图与小提琴图
#加载数据集ToothGrowth data("ToothGrowth") df1 <- ToothGrowth head(df1) ## len supp dose ## 1 4.2 VC 0.5 ## 2 11.5 VC 0.5 ## 3 7.3 VC 0.5 ## 4 5.8 VC 0.5 ## 5 6.4 VC 0.5 ## 6 10.0 VC 0.5 p <- ggboxplot(df1, x="dose", y="len", color = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add = "jitter", shape="dose")#增加了jitter点,点shape由dose映射p
增加不同组间的p-value值,可以自定义需要标注的组间比较
my_comparisons <- list(c("0.5", "1"), c("1", "2"), c("0.5", "2")) p+stat_compare_means(comparisons = my_comparisons)+#不同组间的比较stat_compare_means(label.y=50)
内有箱线图的小提琴图
ggviolin(df1, x="dose", y="len", fill = "dose", palette = c("#00AFBB", "#E7B800", "#FC4E07"), add = "boxplot", add.params = list(fill="white"))+ stat_compare_means(comparisons = my_comparisons, label ="p.signif") + stat_compare_means(label.y = 50)#label这里表示选择显著性标记(星号)
条形图
data("mtcars") df2 <- mtcars df2$cyl <- factor(df2$cyl) df2$name <- rownames(df2)#添加一行name head(df2[, c("name", "wt", "mpg", "cyl")])
按从小到大顺序绘制条形图(不分组排序)
ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white", palette = "jco",#杂志jco的配色 sort.val = "desc",#下降排序 sort.by.groups=FALSE,#不按组排序 x.text.angle=60)
按组进行排序
ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white", palette = "jco",#杂志jco的配色 sort.val = "asc",#上升排序,区别于desc,具体看图演示 sort.by.groups=TRUE,#按组排序 x.text.angle=90)
偏差图
偏差图展示了与参考值之间的偏差
df2$mpg_z <- (df2$mpg-mean(df2$mpg))/sd(df2$mpg) df2$mpg_grp <- factor(ifelse(df2$mpg_z<0, "low", "high"), levels = c("low", "high")) head(df2[, c("name", "wt", "mpg", "mpg_grp", "cyl")])
绘制排序过的条形图
ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white", palette = "jco", sort.val = "asc", sort.by.groups = FALSE, x.text.angle=60, ylab = "MPG z-score", xlab = FALSE, legend.title="MPG Group")
坐标轴变换
ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white", palette = "jco", sort.val = "desc", sort.by.groups = FALSE, x.text.angle=90, ylab = "MPG z-score", xlab = FALSE, legend.title="MPG Group", rotate=TRUE, ggtheme = theme_minimal())
点图(Dot charts)
棒棒糖图(Lollipop chart)
棒棒图可以代替条形图展示数据
ggdotchart(df2, x="name", y="mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), sorting = "ascending", add = "segments", ggtheme = theme_pubr())
可以自设置各种参数
ggdotchart(df2, x="name", y="mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), sorting = "descending", add = "segments", rotate = TRUE, group = "cyl", dot.size = 6, label = round(df2$mpg), font.label = list(color="white", size=9, vjust=0.5), ggtheme = theme_pubr())
偏差图
ggdotchart(df2, x="name", y="mpg_z", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), sorting = "descending", add = "segment", add.params = list(color="lightgray", size=2), group = "cyl", dot.size = 6, label = round(df2$mpg_z, 1), font.label = list(color="white", size=9, vjust=0.5), ggtheme = theme_pubr())+ geom_line(yintercept=0, linetype=2, color="lightgray")
Cleveland点图
ggdotchart(df2, x="name", y="mpg", color = "cyl", palette = c("#00AFBB", "#E7B800", "#FC4E07"), sorting = "descending", rotate = TRUE, dot.size = 2, y.text.col=TRUE, ggtheme = theme_pubr())+ theme_cleveland()
SessionInfo
sessionInfo() ## R version 3.4.0 (2017-04-21) ## Platform: x86_64-w64-mingw32/x64 (64-bit) ## Running under: Windows 8.1 x64 (build 9600) ## ## Matrix products: default ## ## locale: ## [1] LC_COLLATE=Chinese (Simplified)_China.936 ## [2] LC_CTYPE=Chinese (Simplified)_China.936 ## [3] LC_MONETARY=Chinese (Simplified)_China.936 ## [4] LC_NUMERIC=C ## [5] LC_TIME=Chinese (Simplified)_China.936 ## ## attached base packages: ## [1] stats graphics grDevices utils datasets methods base ## ## other attached packages: ## [1] ggpubr_0.1.3 magrittr_1.5 ggplot2_2.2.1 ## ## loaded via a namespace (and not attached): ## [1] Rcpp_0.12.11 knitr_1.16 munsell_0.4.3 colorspace_1.3-2 ## [5] R6_2.2.1 rlang_0.1.1 stringr_1.2.0 plyr_1.8.4 ## [9] dplyr_0.5.0 tools_3.4.0 grid_3.4.0 gtable_0.2.0 ## [13] DBI_0.6-1 htmltools_0.3.6 yaml_2.1.14 lazyeval_0.2.0 ## [17] rprojroot_1.2 digest_0.6.12 assertthat_0.2.0 tibble_1.3.3 ## [21] ggsignif_0.2.0 ggsci_2.4 purrr_0.2.2.2 evaluate_0.10 ## [25] rmarkdown_1.5 labeling_0.3 stringi_1.1.5 compiler_3.4.0 ## [29] scales_0.4.1 backports_1.1.0