利用R语言四种散点密度热图

  1. ## A largish data set
  2. n <- 10000
  3. x1 <- matrix(rnorm(n), ncol = 2)
  4. x2 <- matrix(rnorm(n, mean = 3, sd = 1.5), ncol = 2)
  5. x <- rbind(x1, x2)
  6.  
  7. oldpar <- par(mfrow = c(2, 2), mar=.1+c(3,3,1,1), mgp = c(1.5, 0.5, 0))
  8. smoothScatter(x, nrpoints = 0)
  9. smoothScatter(x)
  10.  
  11. ## but considerably *less* efficient for really large data:
  12. plot(x, col = densCols(x), pch = 20)
  13.  
  14. ## use with pairs:
  15. par(mfrow = c(1, 1))

利用R语言四种散点密度热图-图片1

  1. library(MASS)
  2. library(ggplot2)
  3. ## Warning: package 'ggplot2' was built under R version 3.2.5
  4. n <- 1000
  5. x <- mvrnorm(n, mu=c(.5,2.5), Sigma=matrix(c(1,.6,.6,1), ncol=2))
  6. df = data.frame(x); colnames(df) = c("x","y")
  7.  
  8. commonTheme = list(labs(color="Density",fill="Density",
  9. x="RNA-seq Expression",
  10. y="Microarray Expression"),
  11. theme_bw(),
  12. theme(legend.position=c(0,1),
  13. legend.justification=c(0,1)))
  14.  
  15. ggplot(data=df,aes(x,y)) +
  16. geom_density2d(aes(colour=..level..)) +
  17. scale_colour_gradient(low="green",high="red") +
  18. geom_point() + commonTheme

利用R语言四种散点密度热图-图片2

  1. ggplot(data=df,aes(x,y)) +
  2. stat_density2d(aes(fill=..level..,alpha=..level..),geom='polygon',colour='black') +
  3. scale_fill_continuous(low="green",high="red") +
  4. geom_smooth(method=lm,linetype=2,colour="red",se=F) +
  5. guides(alpha="none") +
  6. geom_point() + commonTheme

利用R语言四种散点密度热图-图片3

  1. n <- 10000
  2. x <- rnorm(n)
  3. y <- rnorm(n)
  4. DF <- data.frame(x,y)
  5. library(LSD)
  6. heatscatter(DF[,1],DF[,2])

利用R语言四种散点密度热图-图片4

  1. # generare random data, swap this for yours :-)!
  2. n <- 10000
  3. x <- rnorm(n)
  4. y <- rnorm(n)
  5. DF <- data.frame(x,y)
  6.  
  7. # Calculate 2d density over a grid
  8. library(MASS)
  9. dens <- kde2d(x,y)
  10.  
  11. # create a new data frame of that 2d density grid
  12. # (needs checking that I haven't stuffed up the order here of z?)
  13. gr <- data.frame(with(dens, expand.grid(x,y)), as.vector(dens$z))
  14. names(gr) <- c("xgr", "ygr", "zgr")
  15.  
  16. # Fit a model
  17. mod <- loess(zgr~xgr*ygr, data=gr)
  18.  
  19. # Apply the model to the original data to estimate density at that point
  20. DF$pointdens <- predict(mod, newdata=data.frame(xgr=x, ygr=y))
  21.  
  22. # Draw plot
  23. library(ggplot2)
  24. ggplot(DF, aes(x=x,y=y, color=pointdens)) + geom_point() + scale_colour_gradientn(colours = rainbow(5)) + theme_bw()

利用R语言四种散点密度热图-图片5

发表评论

匿名网友

拖动滑块以完成验证
加载失败