ComplexHeatmap绘制全基因组突变景观图

来源:作图丫1 5,353

ComplexHeatmap R包是Zuguang Gu编写的,也是现在文章中利用的较多的R包。这个包能实现的功能很强大,今天给大家介绍一下利用ComplexHeatmap R包中的oncoprint绘制突变景观图。

一、文件格式

1、突变矩阵文件

ComplexHeatmap绘制全基因组突变景观图-图片1

2、排序文件

ComplexHeatmap绘制全基因组突变景观图-图片2

二、代码和绘图释义

首先需要安装:打开网址http://www.bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html,找到安装命令:

  1. if (!requireNamespace("BiocManager", quietly = TRUE))
  2. install.packages("BiocManager")
  3. BiocManager::install("ComplexHeatmap")

也可以将此R包下载下来进行本地安装。

安装成功后,输入加载命令

  1. library(ComplexHeatmap)
  2. library(circlize)
  1. mat = read.table(system.file("extdata", package = "ComplexHeatmap",
  2. "tcga_lung_adenocarcinoma_provisional_ras_raf_mek_jnk_signalling.txt"),
  3. header = TRUE, stringsAsFactors = FALSE, sep = "\t")
  4. mat[is.na(mat)] = ""rownames(mat) = mat[, 1]
  5. mat = mat[, -1]
  6. mat= mat[, -ncol(mat)]
  7. mat = t(as.matrix(mat))
  8. mat[1:3, 1:3]
  9. ## TCGA-05-4384-01 TCGA-05-4390-01 TCGA-05-4425-01
  10. ## KRAS " " "MUT;" " "
  11. ## HRAS " " " " " "
  12. ## BRAF " " " " " "

mat文件中含有: HOMDEL, AMP and MUT类型突变. 对突变进行颜色和突变分类定义

  1. col = c("HOMDEL" = "blue", "AMP" = "red", "MUT" = "#008000")
  2. alter_fun = list(
  3. background = function(x, y, w, h) {
  4. grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"),
  5. gp = gpar(fill = "#CCCCCC", col = NA))
  6. },
  7. # big blue
  8. HOMDEL = function(x, y, w, h) {
  9. grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"),
  10. gp = gpar(fill = col["HOMDEL"], col = NA))
  11. },
  12. # bug red
  13. AMP = function(x, y, w, h) {
  14. grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"),
  15. gp = gpar(fill = col["AMP"], col = NA))
  16. },
  17. # small green
  18. MUT = function(x, y, w, h) {
  19. grid.rect(x, y, w-unit(0.5, "mm"), h*0.33,
  20. gp = gpar(fill = col["MUT"], col = NA))
  21. }
  22. )

column_title 和 heatmap_legend_param定义

  1. column_title = "OncoPrint for TCGA Lung Adenocarcinoma, genes in Ras Raf MEK JNK signalling"
  2. heatmap_legend_param = list(title = "Alternations", at = c("HOMDEL", "AMP", "MUT"),
  3. labels = c("Deep deletion", "Amplification", "Mutation"))oncoPrint(mat,
  4. alter_fun = alter_fun, col = col,
  5. column_title = column_title, heatmap_legend_param = heatmap_legend_param)

ComplexHeatmap绘制全基因组突变景观图-图片3

删除空行和空列

remove_empty_columns = TRUE 和 remove_empty_rows = TRUE

  1. oncoPrint(mat,
  2. alter_fun = alter_fun, col = col,
  3. remove_empty_columns = TRUE, remove_empty_rows = TRUE,
  4. column_title = column_title, heatmap_legend_param = heatmap_legend_param)

ComplexHeatmap绘制全基因组突变景观图-图片4

 

行和进行排序

row_order = 1:nrow(mat), column_order = sample_order

  1. sample_order = scan(paste0(system.file("extdata", package = "ComplexHeatmap"),
  2. "/sample_order.txt"), what = "character")oncoPrint(mat,
  3. alter_fun = alter_fun, col = col,
  4. row_order = 1:nrow(mat), column_order = sample_order,
  5. remove_empty_columns = TRUE, remove_empty_rows = TRUE,
  6. column_title = column_title, heatmap_legend_param = heatmap_legend_param)

 

ComplexHeatmap绘制全基因组突变景观图-图片5

行和列注释anno_oncoprint_barplot()可以对突变类型进行筛选绘制Bar图。

  1. oncoPrint(mat,
  2. alter_fun = alter_fun, col = col,
  3. top_annotation = HeatmapAnnotation(
  4. column_barplot = anno_oncoprint_barplot("MUT", border = TRUE, # only MUT
  5. height = unit(4, "cm"))),
  6. right_annotation = rowAnnotation(
  7. row_barplot = anno_oncoprint_barplot(c("AMP", "HOMDEL"), # only AMP and HOMDEL
  8. border = TRUE, height = unit(4, "cm"),
  9. axis_param = list(side = "bottom", labels_rot = 90))),
  10. remove_empty_columns = TRUE, remove_empty_rows = TRUE,
  11. column_title = column_title, heatmap_legend_param = heatmap_legend_param)

ComplexHeatmap绘制全基因组突变景观图-图片6

对行显示位置进行调整pct_side = "right", row_names_side = "left"

  1. oncoPrint(mat,
  2. alter_fun = alter_fun, col = col,
  3. remove_empty_columns = TRUE, remove_empty_rows = TRUE,
  4. pct_side = "right", row_names_side = "left",
  5. column_title = column_title, heatmap_legend_param = heatmap_legend_param)

ComplexHeatmap绘制全基因组突变景观图-图片7

增加样品分组注释

  1. oncoPrint(mat,
  2. alter_fun = alter_fun, col = col,
  3. remove_empty_columns = TRUE, remove_empty_rows = TRUE,
  4. top_annotation = HeatmapAnnotation(cbar = anno_oncoprint_barplot(),
  5. foo1 = 1:172,
  6. bar1 = anno_points(1:172)),
  7. left_annotation = rowAnnotation(foo2 = 1:26),
  8. right_annotation = rowAnnotation(bar2 = anno_barplot(1:26)),
  9. column_title = column_title, heatmap_legend_param = heatmap_legend_param)

ComplexHeatmap绘制全基因组突变景观图-图片8

绘制一张带有分组注释的突变景观图就完成了,同时还能对此图增加聚类热图来显示更多信息。 

ComplexHeatmap绘制全基因组突变景观图-图片9

最后自己用测试数据进行绘图,绘制如下:

ComplexHeatmap绘制全基因组突变景观图-图片10

    • fuhao 0

      请问如果我是自己的数据,怎么或者那个排序的文件

    发表评论

    匿名网友

    拖动滑块以完成验证
    加载失败