ComplexHeatmap R包是Zuguang Gu编写的,也是现在文章中利用的较多的R包。这个包能实现的功能很强大,今天给大家介绍一下利用ComplexHeatmap R包中的oncoprint绘制突变景观图。
一、文件格式
1、突变矩阵文件
2、排序文件
二、代码和绘图释义
首先需要安装:打开网址http://www.bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html,找到安装命令:
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("ComplexHeatmap")
也可以将此R包下载下来进行本地安装。
安装成功后,输入加载命令
library(ComplexHeatmap) library(circlize)
mat = read.table(system.file("extdata", package = "ComplexHeatmap", "tcga_lung_adenocarcinoma_provisional_ras_raf_mek_jnk_signalling.txt"), header = TRUE, stringsAsFactors = FALSE, sep = "\t") mat[is.na(mat)] = ""rownames(mat) = mat[, 1] mat = mat[, -1] mat= mat[, -ncol(mat)] mat = t(as.matrix(mat)) mat[1:3, 1:3] ## TCGA-05-4384-01 TCGA-05-4390-01 TCGA-05-4425-01 ## KRAS " " "MUT;" " " ## HRAS " " " " " " ## BRAF " " " " " "
mat文件中含有: HOMDEL, AMP and MUT类型突变. 对突变进行颜色和突变分类定义
col = c("HOMDEL" = "blue", "AMP" = "red", "MUT" = "#008000") alter_fun = list( background = function(x, y, w, h) { grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"), gp = gpar(fill = "#CCCCCC", col = NA)) }, # big blue HOMDEL = function(x, y, w, h) { grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"), gp = gpar(fill = col["HOMDEL"], col = NA)) }, # bug red AMP = function(x, y, w, h) { grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"), gp = gpar(fill = col["AMP"], col = NA)) }, # small green MUT = function(x, y, w, h) { grid.rect(x, y, w-unit(0.5, "mm"), h*0.33, gp = gpar(fill = col["MUT"], col = NA)) } )
column_title 和 heatmap_legend_param定义
column_title = "OncoPrint for TCGA Lung Adenocarcinoma, genes in Ras Raf MEK JNK signalling" heatmap_legend_param = list(title = "Alternations", at = c("HOMDEL", "AMP", "MUT"), labels = c("Deep deletion", "Amplification", "Mutation"))oncoPrint(mat, alter_fun = alter_fun, col = col, column_title = column_title, heatmap_legend_param = heatmap_legend_param)
删除空行和空列
remove_empty_columns = TRUE 和 remove_empty_rows = TRUE
oncoPrint(mat, alter_fun = alter_fun, col = col, remove_empty_columns = TRUE, remove_empty_rows = TRUE, column_title = column_title, heatmap_legend_param = heatmap_legend_param)
行和进行排序
row_order = 1:nrow(mat), column_order = sample_order
sample_order = scan(paste0(system.file("extdata", package = "ComplexHeatmap"), "/sample_order.txt"), what = "character")oncoPrint(mat, alter_fun = alter_fun, col = col, row_order = 1:nrow(mat), column_order = sample_order, remove_empty_columns = TRUE, remove_empty_rows = TRUE, column_title = column_title, heatmap_legend_param = heatmap_legend_param)
行和列注释anno_oncoprint_barplot()可以对突变类型进行筛选绘制Bar图。
oncoPrint(mat, alter_fun = alter_fun, col = col, top_annotation = HeatmapAnnotation( column_barplot = anno_oncoprint_barplot("MUT", border = TRUE, # only MUT height = unit(4, "cm"))), right_annotation = rowAnnotation( row_barplot = anno_oncoprint_barplot(c("AMP", "HOMDEL"), # only AMP and HOMDEL border = TRUE, height = unit(4, "cm"), axis_param = list(side = "bottom", labels_rot = 90))), remove_empty_columns = TRUE, remove_empty_rows = TRUE, column_title = column_title, heatmap_legend_param = heatmap_legend_param)
对行显示位置进行调整pct_side = "right", row_names_side = "left"
oncoPrint(mat, alter_fun = alter_fun, col = col, remove_empty_columns = TRUE, remove_empty_rows = TRUE, pct_side = "right", row_names_side = "left", column_title = column_title, heatmap_legend_param = heatmap_legend_param)
增加样品分组注释
oncoPrint(mat, alter_fun = alter_fun, col = col, remove_empty_columns = TRUE, remove_empty_rows = TRUE, top_annotation = HeatmapAnnotation(cbar = anno_oncoprint_barplot(), foo1 = 1:172, bar1 = anno_points(1:172)), left_annotation = rowAnnotation(foo2 = 1:26), right_annotation = rowAnnotation(bar2 = anno_barplot(1:26)), column_title = column_title, heatmap_legend_param = heatmap_legend_param)
绘制一张带有分组注释的突变景观图就完成了,同时还能对此图增加聚类热图来显示更多信息。
最后自己用测试数据进行绘图,绘制如下:
1F
请问如果我是自己的数据,怎么或者那个排序的文件