第二个数据--CEL-seq2, GSE85241
Muraro et al. (2016) 利用CEL-seq2技术并结合UMI、ERCC得到的
https://www.ncbi.nlm.nih.gov//geo/query/acc.cgi?acc=GSE85241
下面快速使用代码
读数据,看数据
gse85241.df <- read.table("GSE85241_cellsystems_dataset_4donors_updated.csv.gz", sep='t', header=TRUE, row.names=1) > dim(gse85241.df) [1] 19140 3072
提取meta信息
# 还是先看一下 > head(colnames(gse85241.df)) [1] "D28.1_1" "D28.1_2" "D28.1_3" "D28.1_4" "D28.1_5" "D28.1_6" # 依然是:点号前面的是donor信息 donor.names <- sub("^(D[0-9]+).*", "\1", colnames(gse85241.df)) > table(donor.names) donor.names D28 D29 D30 D31 768 768 768 768 # 然后文章使用了8个96孔板,于是可以将点号和下划线之间的数字提取出来 plate.id <- sub("^D[0-9]+\.([0-9]+)_.*", "\1", colnames(gse85241.df)) #这句代码中注意使用了一个转义符\,在R中需要用两个反斜线来表示转义 > table(plate.id) plate.id 1 2 3 4 5 6 7 8 384 384 384 384 384 384 384 384
提取基因、ERCC信息
gene.symb <- gsub("__chr.*$", "", rownames(gse85241.df)) is.spike <- grepl("^ERCC-", gene.symb) > table(is.spike) is.spike FALSE TRUE 19059 81
基因转换
library(org.Hs.eg.db) gene.ids <- mapIds(org.Hs.eg.db, keys=gene.symb, keytype="SYMBOL", column="ENSEMBL") gene.ids[is.spike] <- gene.symb[is.spike] keep <- !is.na(gene.ids) & !duplicated(gene.ids) gse85241.df <- gse85241.df[keep,] rownames(gse85241.df) <- gene.ids[keep] > summary(keep) Mode FALSE TRUE logical 1949 17191 # 去掉了快2000个重复或无表达的基因
创建单细胞对象
# 存储metadata作为colData、基因信息作为rawData、ERCC作为spike-in sce.gse85241 <- SingleCellExperiment(list(counts=as.matrix(gse85241.df)), colData=DataFrame(Donor=donor.names, Plate=plate.id), rowData=DataFrame(Symbol=gene.symb[keep])) isSpike(sce.gse85241, "ERCC") <- grepl("^ERCC-", rownames(gse85241.df))
质控和标准化
sce.gse85241 <- calculateQCMetrics(sce.gse85241, compact=TRUE) QC <- sce.gse85241$scater_qc low.lib <- isOutlier(QC$all$log10_total_counts, type="lower", nmad=3) low.genes <- isOutlier(QC$all$log10_total_features_by_counts, type="lower", nmad=3) high.spike <- isOutlier(QC$feature_control_ERCC$pct_counts, type="higher", nmad=3) data.frame(LowLib=sum(low.lib), LowNgenes=sum(low.genes), HighSpike=sum(high.spike, na.rm=TRUE)) # LowLib LowNgenes HighSpike # 577 669 696 # 然后去掉低质量的细胞 discard <- low.lib | low.genes | high.spike sce.gse85241 <- sce.gse85241[,!discard] > summary(discard) Mode FALSE TRUE logical 2346 726
可以看到文库小的有577个,基因表达少的有669个,高spike-in的有696个,但是最后只去掉了726个,这是因为,有的细胞同时存在以上两种或三种低质量情况,因此并不能简单认为总共去除细胞数=577+669+696
聚类
clusters <- quickCluster(sce.gse85241, min.mean=0.1, method="igraph") > table(clusters) clusters 1 2 3 4 5 6 237 248 285 483 613 480
标准化
sce.gse85241 <- computeSumFactors(sce.gse85241, min.mean=0.1, clusters=clusters) summary(sizeFactors(sce.gse85241)) sce.gse85241 <- computeSpikeFactors(sce.gse85241, general.use=FALSE) summary(sizeFactors(sce.gse85241, "ERCC")) sce.gse85241 <- normalize(sce.gse85241)
鉴定HVGs
block <- paste0(sce.gse85241$Plate, "_", sce.gse85241$Donor) fit <- trendVar(sce.gse85241, block=block, parametric=TRUE) dec <- decomposeVar(sce.gse85241, fit) plot(dec$mean, dec$total, xlab="Mean log-expression", ylab="Variance of log-expression", pch=16) is.spike <- isSpike(sce.gse85241) points(dec$mean[is.spike], dec$total[is.spike], col="red", pch=16) curve(fit$trend(x), col="dodgerblue", add=TRUE)
这张图中的ERCC表达量就有一些比较高的,但是占比不高,另外总体波动不大
# 选出来这些基因 dec.gse85241 <- dec dec.gse85241$Symbol <- rowData(sce.gse85241)$Symbol dec.gse85241 <- dec.gse85241[order(dec.gse85241$bio, decreasing=TRUE),] > head(dec.gse85241,2) DataFrame with 2 rows and 7 columns mean total bio <numeric> <numeric> <numeric> ENSG00000115263 7.66453729345785 6.66863456231166 6.63983282676052 ENSG00000089199 4.62375793902937 6.46558866721711 6.34422879524839 tech p.value FDR Symbol <numeric> <numeric> <numeric> <character> ENSG00000115263 0.0288017355511366 0 0 GCG ENSG00000089199 0.12135987196872 0 0 CHGB
第三个数据--Smart-seq2, E-MTAB-5061
Segerstolpe et al. (2016)利用Smart-seq2,添加了ERCC,这个数据和上面两个不同,它存放在ArrayExpress数据库,当然也是用链接规律的:https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061/ (这个文件比较大,压缩文件151M,解压后700多M)
读入数据
文件较大,先读入样本,也就是第一行(nrow=1),看下数量
header <- read.table("pancreas_refseq_rpkms_counts_3514sc.txt", nrow=1, sep="t", comment.char="") # 先看下header信息 > header[1,1:4] V1 V2 V3 V4 #samples HP1502401_N13 HP1502401_D14 HP1502401_F14 # 然后将第一个(#samples)去掉 ncells <- ncol(header) - 1L #保存为整数
然后只加载基因名称和表达矩阵
# 这段代码需要再好好理解下 col.types <- vector("list", ncells*2 + 2) col.types[1:2] <- "character" col.types[2+ncells + seq_len(ncells)] <- "integer" e5601.df <- read.table("pancreas_refseq_rpkms_counts_3514sc.txt", sep="t", colClasses=col.types) # 最后将基因信息和表达矩阵分离 gene.data <- e5601.df[,1:2] e5601.df <- e5601.df[,-(1:2)] colnames(e5601.df) <- as.character(header[1,-1]) dim(e5601.df) ## [1] 26271 3514
判断ERCC
# gene.data[,2]对应测序数据中的基因ID,gene.data[,1]是相应的symbol ID is.spike <- grepl("^ERCC-", gene.data[,2]) > table(is.spike) is.spike FALSE TRUE 26179 92
基因转换
library(org.Hs.eg.db) gene.ids <- mapIds(org.Hs.eg.db, keys=gene.data[,1], keytype="SYMBOL", column="ENSEMBL") gene.ids[is.spike] <- gene.data[is.spike,2] # 去掉重复和无表达基因 keep <- !is.na(gene.ids) & !duplicated(gene.ids) e5601.df <- e5601.df[keep,] rownames(e5601.df) <- gene.ids[keep] > summary(keep) Mode FALSE TRUE logical 3367 22904
提取metadata信息
metadata <- read.table("E-MTAB-5061.sdrf.txt", header=TRUE, sep="t", check.names=FALSE) m <- match(colnames(e5601.df), metadata$`Assay Name`) stopifnot(all(!is.na(m))) metadata <- metadata[m,] donor.id <- metadata[["Characteristics[individual]"]] > table(donor.id) donor.id AZ HP1502401 HP1504101T2D HP1504901 HP1506401 96 352 383 383 383 HP1507101 HP1508501T2D HP1509101 HP1525301T2D HP1526901T2D 383 383 383 384 384
创建单细胞对象
sce.e5601 <- SingleCellExperiment(list(counts=as.matrix(e5601.df)), colData=DataFrame(Donor=donor.id), rowData=DataFrame(Symbol=gene.data[keep,1])) isSpike(sce.e5601, "ERCC") <- grepl("^ERCC-", rownames(e5601.df))
后面的操作和之前保持一致了
sce.e5601 <- calculateQCMetrics(sce.e5601, compact=TRUE) QC <- sce.e5601$scater_qc low.lib <- isOutlier(QC$all$log10_total_counts, type="lower", nmad=3) low.genes <- isOutlier(QC$all$log10_total_features_by_counts, type="lower", nmad=3) high.spike <- isOutlier(QC$feature_control_ERCC$pct_counts, type="higher", nmad=3) low.spike <- isOutlier(QC$feature_control_ERCC$log10_total_counts, type="lower", nmad=2) data.frame(LowLib=sum(low.lib), LowNgenes=sum(low.genes), HighSpike=sum(high.spike, na.rm=TRUE), LowSpike=sum(low.spike)) # LowLib LowNgenes HighSpike LowSpike # 162 572 904 359 # 舍弃低质量细胞 discard <- low.lib | low.genes | high.spike | low.spike sce.e5601 <- sce.e5601[,!discard] > summary(discard) Mode FALSE TRUE logical 2285 1229 # 聚类 clusters <- quickCluster(sce.e5601, min.mean=1, method="igraph") > table(clusters) clusters 1 2 3 4 5 6 305 307 469 272 494 438 # 标准化 sce.e5601 <- computeSumFactors(sce.e5601, min.mean=1, clusters=clusters) sce.e5601 <- computeSpikeFactors(sce.e5601, general.use=FALSE) sce.e5601 <- normalize(sce.e5601)
因为这个数据中donor信息比较多,所以可视化也要特别对待
donors <- sort(unique(sce.e5601$Donor)) > donors [1] "AZ" "HP1502401" "HP1504101T2D" "HP1504901" [5] "HP1506401" "HP1507101" "HP1508501T2D" "HP1509101" [9] "HP1525301T2D" "HP1526901T2D"
一共10个donor,作图可以设置这个参数,调整图片为2列
par(mfrow=c(ceiling(length(donors)/2), 2), mar=c(4.1, 4.1, 2.1, 0.1))
代码作图,注意这段代码和之前的不同
collected <- list() # 第一行可以先不管,目的是创建一个空列表 # 下面进行一个循环,对10个donor进行循环:先取出第一个donor的列信息,然后使用if判断它是不是大于两列(也就是说:这个donor是不是有两个以上的细胞样本),如果只有一列那么就舍去;然后对这个donor的所有列进行标准化,去掉细胞文库差异;接着利用trendVar和decomposeVar鉴定HVGs,然后和之前一样进行可视化;最后将这个donor鉴定出来的HVGs信息放入collected这个列表中,留着以后用 for (x in unique(sce.e5601$Donor)) { current <- sce.e5601[,sce.e5601$Donor==x] if (ncol(current)<2L) { next } current <- normalize(current) fit <- trendVar(current, parametric=TRUE) dec <- decomposeVar(current, fit) plot(dec$mean, dec$total, xlab="Mean log-expression", ylab="Variance of log-expression", pch=16, main=x) points(fit$mean, fit$var, col="red", pch=16) curve(fit$trend(x), col="dodgerblue", add=TRUE) collected[[x]] <- dec }
因为这个数据中donor信息比较多,因此我们需要将不同donor的HVGs整合成一个数据框(注意是更高级的SV4数据框)
dec.e5601 <- do.call(combineVar, collected) dec.e5601$Symbol <- rowData(sce.e5601)$Symbol dec.e5601 <- dec.e5601[order(dec.e5601$bio, decreasing=TRUE),] > head(dec.e5601,3) DataFrame with 3 rows and 7 columns mean total bio <numeric> <numeric> <numeric> ENSG00000115263 9.79547495804957 24.9059740209558 24.693297105741 ENSG00000118271 10.3601718361198 19.0590510324402 18.9670050741979 ENSG00000089199 8.78499018265489 17.2605488560106 16.9971950283286 tech p.value FDR Symbol <numeric> <numeric> <numeric> <character> ENSG00000115263 0.212676915214769 0 0 GCG ENSG00000118271 0.0920459582422512 0 0 TTR ENSG00000089199 0.263353827682004 0 0 CHGB