Odds ratio(OR)从字面上可看出,是两个odds的ratio,其用于:
在病例对照研究(case-control study)中,分析暴露风险因素与疾病(或者用药)的关联程度;主要是反映暴露与疾病之间关联强度的指标,OR常适用于病例对照研究,也可以运用于前瞻性的研究(当观察时间相等时)
与其相似的有个指标relative risk(RR),其可以理解为risk ratio,用于:
在队列研究(cohort study)中,分析暴露因素与发病的关联程度;主要是反映暴露与发病(死亡)关联强度的最有用的指标,RR适用于队列研究或随机对照试验。
以一个例子来说明两者的区别,数据表格如下(Mutated gene对应暴露风险因素,Cancer对应疾病):
Cancer | Normal | Total | |
---|---|---|---|
Mutated gene | 23 | 117 | 140 |
No mutated gene | 6 | 210 | 216 |
Total | 29 | 327 | 356 |
则OR = (23/117) / (6/210) = 6.88
,RR = (23/140) / (6/216) = 5.91
从上可看出,OR表明暴露组的疾病风险程度是非暴露组的6.88倍,RR表明暴露组发病的风险是非暴露组的5.91倍
OR值的统计学意义:
- OR>1,暴露与疾病的危险度增加,两者呈正相关
- OR<1,暴露与疾病的危险度减少,两者呈负相关
- OR=1,暴露与疾病的危险度无关,两者呈不相关
RR值的统计学意义:
- OR>1,暴露因素是疾病的危险因素,两者呈正相关
- OR<1,暴露因素是疾病的保护因素,两者呈负相关
- OR=1,暴露因素与疾病无关,两者呈不相关
注意点:
当疾病的incidence rate较低时,OR近似于RR,故当疾病很罕见时,常用OR来作为RR的近似值;然而当incidence rate高于10%的时候,OR与RR的差距会变得越来越大,从而使得在这些情况下使用OR就变得并不那么合适了(OR会倾向于给出一个暴露 vs. 非暴露间差距更明显的值,因此导致临床意义不足)
为什么在病例对照研究(case-control study)中无法计算RR值?
因为我们一开始选定的人群是基于他们发没发生event来定的,所以这时候我们这个研究群体里的的incidence rate并不是target population里真实的incidence rate (事实上,case-control study里的incidence rate一般会远大于实际的incidence rate,因为做case-control study的初衷就是因为target population里的event rate太低),所以我们没法计算RR
Odds ratio(OR)的计算方法
StatQuest教程中StatQuest: Odds Ratios and Log(Odds Ratios)这节讲到了如何计算OR值以及P值(statistical significance),大致可以分为3种方法:
- Fisher’s Exact Test
- Chi-Square Test
- The Wald Test (对应常用的logistic regression)
以上述数据表格为例:
dat <- matrix(c(23, 6, 117, 210), nrow = 2, ncol = 2) rownames(dat) <- c("Mutated gene", "No mutated gene") colnames(dat) <- c("Cancer", "Normal")
Fisher’s Exact Test
使用fisher.test
函数即可计算P值及OR值,以及置信区间
> fisher.test(dat) Fisher's Exact Test for Count Data data: dat p-value = 1.099e-05 alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval: 2.613152 21.139349 sample estimates: odds ratio 6.842952
Chi-Square Test
使用chisq.test
函数,不对P值做校正的话,加上correct = F
参数
> chisq.test(dat, correct = F) Pearson's Chi-squared test data: dat X-squared = 21.154, df = 1, p-value = 4.237e-06
epitools package
如果想同时看Fisher’s Exact Test和Chi-Square Test的结果,并计算OR值的话,可以考虑用epitools
包(注意原始输入数据的格式,需要先翻转下),如:
dat2 <- matrix(c(6, 23, 210, 117), nrow = 2, ncol = 2) rownames(dat2) <- c("No mutated gene", "Mutated gene") colnames(dat2) <- c("Normal", "Cancer") library(epitools) > epitools::oddsratio(dat2, correction = F, rev = "c") $data Cancer Normal Total No mutated gene 210 6 216 Mutated gene 117 23 140 Total 327 29 356 $measure NA odds ratio with 95% C.I. estimate lower upper No mutated gene 1.000000 NA NA Mutated gene 6.717846 2.805078 18.87268 $p.value NA two-sided midp.exact fisher.exact chi.square No mutated gene NA NA NA Mutated gene 6.572274e-06 1.098703e-05 4.237152e-06 $correction [1] FALSE attr(,"method") [1] "median-unbiased estimate & mid-p exact CI"
其同样也可以计算RR值
epitools::riskratio(dat2, correction = F, rev = "c")
fmsb package
还可以用fmsb
包计算OR值及置信区间(跟SAS结果一致。。。)
library(fmsb) > fmsb::oddsratio(dat) Disease Nondisease Total Exposed 23 117 140 Nonexposed 6 210 216 Total 29 327 356 Odds ratio estimate and its significance probability data: dat p-value = 4.371e-06 95 percent confidence interval: 2.724202 17.377236 sample estimates: [1] 6.880342
logistic regression
logistic regression,即假设error terms服从binomial distribution,并使用logit作为link function;然后通过model计算出变量对应的
logit(p)
,即logodds
,odds则是等于exp(logodds)
,而p(predict probabilities )则是odds/(1+odds)
对于Odd Ratios在Logistic regression中的理解可以看:
- Interpreting Odd Ratios in Logistic Regression 或者 FAQ: HOW DO I INTERPRET ODDS RATIOS IN LOGISTIC REGRESSION?(可下载示例数据)
- R: Calculate and interpret odds ratio in logistic regression
- LOGIT REGRESSION | R DATA ANALYSIS EXAMPLES
通过glm
函数对数据进行拟合(观察female变量与hon之间的影响)
data <- read.csv("https://stats.idre.ucla.edu/wp-content/uploads/2016/02/sample.csv") > head(data) female read write math hon femalexmath predicted predicted2 1 0 57 52 41 0 0 -1.4708517 -3.3839875 2 1 68 59 53 0 53 -0.8780695 -1.5079033 3 0 44 33 54 0 0 -1.4708517 -1.3515629 4 0 63 44 47 0 0 -1.4708517 -2.4459454 5 0 47 52 57 0 0 -1.4708517 -0.8825418 6 0 44 52 51 0 0 -1.4708517 -1.8205840 f1<-glm(hon~female,data = data,family = binomial) # summary(f1)$coeff > summary(f1) Call: glm(formula = hon ~ female, family = binomial, data = data) Deviance Residuals: Min 1Q Median 3Q Max -0.8337 -0.8337 -0.6431 -0.6431 1.8317 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -1.4709 0.2690 -5.469 4.53e-08 *** female 0.5928 0.3414 1.736 0.0825 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 222.71 on 199 degrees of freedom Residual deviance: 219.61 on 198 degrees of freedom AIC: 223.61 Number of Fisher Scoring iterations: 4
从上可看出,每一单位female的变化(在此例子中相当于从0变成1),hon的log adds增加0.5928,即回归系数(logistic regression coefficients)
查看回归系数以及对应的显著性P值(默认是用)
coef(summary(g))["g2",c("Estimate","Pr(>|z|)")]
从回归系数可计算出OR值(1.8090145)以及置信区间(0.9362394 - 3.5929859)
> exp(cbind(OR = coef(f1), confint(f1))) Waiting for profiling to be done... OR 2.5 % 97.5 % (Intercept) 0.2297297 0.1312460 0.3792884 female 1.8090145 0.9362394 3.5929859 # confint.default(f1)
按照公式,OR值也可以手动计算:
data$predicted<-predict(f1) # Calculate log odds s1 <-data$predicted[data$female==0][1] s2 <-data$predicted[data$female==1][1] odd_ratio<-exp(s1-s2)
predict probabilities从公式上可得是odds/(1+odds)
,从上述可的female变量对应的log odds,然后转化成odds后即可计算,如:
exp(s2)/(1 + exp(s2)) # exp(s1)/(1 + exp(s1))
或者通过下述函数也可直接出结果
predict(f1, type = "response")
绘制拟合曲线散点图(这个示例数据不太合适展示,拟合效果有点差,因此不展示了)
# f2<-glm(hon~math,data = data,family = binomial) # # library(dplyr) # dt <-data %>% # group_by(math,hon) %>% # summarise(freq=n()) %>% # mutate(all=sum(freq),prob=freq/all,odds=prob/(1-prob),logodds=log(odds)) %>% # round(.,5) # # data$fit <- predict(f2, data, type = "response") # # dt <- left_join(dt, data[,c("math", "fit")]) # library(ggplot2) # ggplot(dt, aes(x=math, y=prob)) + # geom_point() + # geom_line(aes(x=math, y=fit))