对于数据的统计分析来说,有很多人觉得做出p值那一步比较高深。其实不然,数据整理和数据清洗才是吃力不讨好的事情,也能体现出数据处理人员的能力。数据整理与清洗既花费时间,又不出成果,因为大家往往觉得“差异是否有统计学意义”才是统计的成果。
对于任何一个统计软件来说,将数据整理成可供分析的格式,往往都是比较花费功夫的事情。准确且高效地进行数据整理,是良好的统计分析的前提,也要求整理人员有着很强的软件操作功底。本文就向大家介绍一个数据整理的小技巧,帮助大家快速地进行数据整理,使用SPSS的计数功能。
假设现在面临这样一种情况,有180名研究对象分别对a1-a10题进行了作答,每1题有5个选项,分别是:非常满意(1)、满意(2)、一般(3)、不满意(4)和非常不满意(5)。研究者想知道不同性别的研究对象在a1-a10共计10个项目上,满意的出现次数是否相同?这是一个简单的两组间计量资料比较的例子,很容易想到用t检验或者非参数检验。
但是首先需要计算的是每个研究对象10道题目中选择“满意”的题目有几题?这时候推荐使用SPSS转换功能下的计数功能,如下图:
然后点击OK,就会出现下图的结果,软件自动生存了count列,并在该列中展示了每个人选择“满意”的次数。
这样的计算是不是比以前写程序来计算方便多了。另外这个计数功能还可以用在多个选项的计数上,比如求出每个研究对象“选择满意和非常满意”的次数。如下:
呃,本文写到这儿就应该结束了。最后附上SPSS程序的另一种写法,让大家稍微感受一下两种写法的差异。
1、Count功能的语法:
COUNT count=a1 a2 a3 a4 a5 a6 a7 a8 a9 a10(2).
VARIABLE LABELS count '选择满意的次数'.
EXECUTE.
2、另一种语法:
if (a1=2) count=1.
if (a2=2) count=sum(count, 1).
if (a3=2) count=sum(count, 1).
if (a4=2) count=sum(count, 1).
if (a5=2) count=sum(count, 1).
if (a6=2) count=sum(count, 1).
if (a7=2) count=sum(count, 1).
if (a8=2) count=sum(count, 1).
if (a9=2) count=sum(count, 1).
if (a10=2) count=sum(count, 1).
VARIABLE LABELS count '选择满意的次数'.
EXECUTE.