在利用深度学习模型分析DNA序列时,需要对DNA序列进行one hot encoding。以下是使用PyTorch对DNA序列进行One-hot编码的三种方法,并整合在一个代码中,同时计算不同方法处理128条DNA序列的时间消耗:
import time import torch import torch.nn.functional as F import numpy as np # 定义字母与索引的映射关系 mapping = {'A': 0, 'T': 1, 'C': 2, 'G': 3} # 定义DNA序列列表 sequences = ['ATCG' * 250] * 128 # DNA序列长度为1000bp,共128条序列 # 方法一:torch.nn.functional.one_hot函数 start_time = time.time() onehot_sequences1 = [] for sequence in sequences: index_sequence = [mapping[base] for base in sequence] onehot_sequence = F.one_hot(torch.tensor(index_sequence), num_classes=4).float() onehot_sequences1.append(onehot_sequence) end_time = time.time() method1_time = end_time - start_time # 方法二:torch.eye函数 start_time = time.time() onehot_matrix = torch.eye(4) onehot_sequences2 = [] for sequence in sequences: index_sequence = [mapping[base] for base in sequence] onehot_sequence = onehot_matrix[index_sequence] onehot_sequences2.append(onehot_sequence) end_time = time.time() method2_time = end_time - start_time # 方法三:numpy进行转换 start_time = time.time() onehot_matrix = np.eye(4) onehot_sequences3 = [] for sequence in sequences: index_sequence = [mapping[base] for base in sequence] onehot_sequence = onehot_matrix[index_sequence] onehot_sequences3.append(onehot_sequence) onehot_sequences3 = torch.from_numpy(np.array(onehot_sequences3)).float() end_time = time.time() method3_time = end_time - start_time print("Method 1 time:", method1_time) print("Method 2 time:", method2_time) print("Method 3 time:", method3_time)
测试结果:
Method 1 time: 0.09143757820129395 Method 2 time: 0.02177143096923828 Method 3 time: 0.035161733627319336