R语言的各种检验

1 7,714

1、W检验(Shapiro–Wilk (夏皮罗–威克尔 ) W统计量检验)

     检验数据是否符合正态分布,R函数:shapiro.test().

 结果含义:当p值小于某个显著性水平α(比如0.05)时,则认为

样本不是来自正态分布的总体,否则则承认样本来自正态分布的总体。

2、K检验(经验分布的Kolmogorov-Smirnov检验)

R函数:ks.test(),如果P值很小,说明拒绝原假设,表明数据不符合F(n,m)分布。

3、相关性检验:

R函数:cor.test()

cor.test(x, y,
alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"),
exact = NULL, conf.level = 0.95, ...)

结果含义:如果p值很小,则拒绝原假设,认为x,y是相关的。否则认为是不相关的。

4、T检验

用于正态总体均值假设检验,单样本,双样本都可以。      

R语言的各种检验-图片1

t.test()

t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

结果意义:P值小于显著性水平时拒绝原假设,否则,接受原假设。具体的假设要看所选择的是双边假设还是单边假设(又分小于和大于)

5、正态总体方差检验

t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

结果含义:P值小于显著性水平时拒绝原假设,否则,接受原假设。具体的假设要看所选择的是双边假设还是单边假设(又分小于和大于)

R语言的各种检验-图片2

6、二项分布总体假设检验

binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

原假设:p=p0,p

7、Pearson 拟合优度χ2检验

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000)

 原假设H0:X符合F分布。

p-值小于某个显著性水平,则表示拒绝原假设,否则接受原假设。

8、Fisher精确的独立检验:

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95)

原假设:X,Y相关。

9、McNemar检验:

mcnemar.test(x, y = NULL, correct = TRUE)

原假设:两组数据的频数没有区别。

10、秩相关检验

cor.test(x, y,
alternative = c("two.sided", "less", "greater"),
method = "spearman", conf.level = 0.95, ...)

原假设:x,y相关.

11、Wilcoxon秩检验

wilcox.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

原假设:中位数大于,小于,不等于mu.

    • x-play 0

      怎么分享啊

    发表评论

    匿名网友