还是先获取随机DNA序列和其他序列对象:
- library(Biostrings)
- rndSeq <- function(dict, n) {
- paste(sample(dict, n, replace = T), collapse = "")
- }
- set.seed(0)
- # 用mapply和rndSeq函数获取5条序列(字符串):
- DNA.raw <- mapply(rndSeq, list(DNA_BASES), rep(20, 5))
- names(DNA.raw) <- paste("SEQ", 1:5, sep = "-")
- # DNAString对象,1条序列
- DNA.str <- DNAString(DNA.raw[1])
- # DNAStringSet对象,含5条序列
- DNA.set <- DNAStringSet(DNA.raw)
- # Views对象
- DNA.vws <- successiveViews(DNA.str, width = rep(4, 5))
一、获取序列基本信息
包括获取名称(names)、长度(length)、字符个数(nchar)和对象头/尾(head/tail)等信息的函数。
函数的用法简单,但需注意XString类对象的返回结果和其他类型有些差别:
- # length函数----------------------
- length(DNA.raw)
- ## [1] 5
- # 结果为序列的长度
- length(DNA.str)
- ## [1] 20
- length(DNA.set)
- ## [1] 5
- length(DNA.vws)
- ## [1] 5
- # nchar函数-----------------------
- nchar(DNA.raw)
- ## SEQ-1 SEQ-2 SEQ-3 SEQ-4 SEQ-5
- ## 20 20 20 20 20
- nchar(DNA.str)
- ## [1] 20
- nchar(DNA.set)
- ## [1] 20 20 20 20 20
- nchar(DNA.vws)
- ## [1] 4 4 4 4 4
- # head/tail函数-------------------
- head(DNA.raw, 2)
- ## SEQ-1 SEQ-2
- ## "TCCGTATTGGAAAGCTCGTC" "TTAGACCACTCCGCATGTAG"
- # 结果为序列的前几个碱基
- head(DNA.str, 2)
- ## 2-letter "DNAString" instance
- ## seq: TC
- head(DNA.set, 2)
- ## A DNAStringSet instance of length 2
- ## width seq names
- ## [1] 20 TCCGTATTGGAAAGCTCGTC SEQ-1
- ## [2] 20 TTAGACCACTCCGCATGTAG SEQ-2
- head(DNA.vws, 2)
- ## Views on a 20-letter DNAString subject
- ## subject: TCCGTATTGGAAAGCTCGTC
- ## views:
- ## start end width
- ## [1] 1 4 4 [TCCG]
- ## [2] 5 8 4 [TATT]
二、序列转换
1、获取反向、互补、反向互补序列:
reverse(), complement(), reverseComplement()可以使用string, XString, XXXSet和Views类对象进行操作。下面看看reverse函数的结果:
- DNA.raw
- ## SEQ-1 SEQ-2 SEQ-3
- ## "TCCGTATTGGAAAGCTCGTC" "TTAGACCACTCCGCATGTAG" "CTGTGGTACGGCTCAAACGG"
- ## SEQ-4 SEQ-5
- ## "CTCCCGCCTATCTCCCTTCT" "TCGCCTAGAAAAAGTTTCCT"
- reverse(DNA.raw)
- ## SEQ-1 SEQ-2 SEQ-3
- ## "CTGCTCGAAAGGTTATGCCT" "GATGTACGCCTCACCAGATT" "GGCAAACTCGGCATGGTGTC"
- ## SEQ-4 SEQ-5
- ## "TCTTCCCTCTATCCGCCCTC" "TCCTTTGAAAAAGATCCGCT"
- reverse(DNA.str)
- ## 20-letter "DNAString" instance
- ## seq: CTGCTCGAAAGGTTATGCCT
- reverse(DNA.set)
- ## A DNAStringSet instance of length 5
- ## width seq names
- ## [1] 20 CTGCTCGAAAGGTTATGCCT SEQ-1
- ## [2] 20 GATGTACGCCTCACCAGATT SEQ-2
- ## [3] 20 GGCAAACTCGGCATGGTGTC SEQ-3
- ## [4] 20 TCTTCCCTCTATCCGCCCTC SEQ-4
- ## [5] 20 TCCTTTGAAAAAGATCCGCT SEQ-5
- reverse(DNA.vws)
- ## Views on a 20-letter DNAString subject
- ## subject: CTGCTCGAAAGGTTATGCCT
- ## views:
- ## start end width
- ## [1] 17 20 4 [GCCT]
- ## [2] 13 16 4 [TTAT]
- ## [3] 9 12 4 [AAGG]
- ## [4] 5 8 4 [TCGA]
- ## [5] 1 4 4 [CTGC]
2、序列翻译:
翻译函数translate()只能使用XString和XXXSet类对象(Biostrings version 2.29.3):
- # 错误
- translate(DNA.raw)
- ## Error: unable to find an inherited method for function 'translate' for
- ## signature '"character"'
- translate(DNA.str)
- ## 6-letter "AAString" instance
- ## seq: SVLESS
- # 错误
- translate(DNA.set)
- ## A AAStringSet instance of length 5
- ## width seq
- ## [1] 6 SVLESS
- ## [2] 6 LDHSAC
- ## [3] 6 LWYGSN
- ## [4] 6 LPPISL
- ## [5] 6 SPRKSF
- # 错误
- translate(DNA.vws)
- ## Error: unable to find an inherited method for function 'translate' for
- ## signature '"XStringViews"'
3、DNA/RNA互转:
使用dna2rna, rna2dna或cDNA函数。这些函数对于数据对象有严格的要求:
- DNA.str
- ## 20-letter "DNAString" instance
- ## seq: TCCGTATTGGAAAGCTCGTC
- dna2rna(DNA.str)
- ## 20-letter "RNAString" instance
- ## seq: UCCGUAUUGGAAAGCUCGUC
- # 错误
- dna2rna(DNA.raw)
- ## Error: dna2rna() only works on DNA input
- # 错误
- cDNA(DNA.str)
- ## Error: cDNA() only works on RNA input
- cDNA(dna2rna(DNA.str))
- ## 20-letter "DNAString" instance
- ## seq: AGGCATAACCTTTCGAGCAG
4、其他:
R base包的chartr函数已经重载,可以应用于序列对象,但最好避免使用,因为会出现符号检查问题:
- chartr("T", "A", DNA.set)
- ## A DNAStringSet instance of length 5
- ## width seq names
- ## [1] 20 ACCGAAAAGGAAAGCACGAC SEQ-1
- ## [2] 20 AAAGACCACACCGCAAGAAG SEQ-2
- ## [3] 20 CAGAGGAACGGCACAAACGG SEQ-3
- ## [4] 20 CACCCGCCAAACACCCAACA SEQ-4
- ## [5] 20 ACGCCAAGAAAAAGAAACCA SEQ-5
- # 错误
- chartr("T", "U", DNA.set)
- ## Error: key 85 (char 'U') not in lookup table
其他一些R base包的字符串操作函数也可以使用序列对象,但注意返回结果的类型。下面两行代码的返回值都是字符串向量,而不是DNAStringSet对象:
- tolower(DNA.set)
- ## SEQ-1 SEQ-2 SEQ-3
- ## "tccgtattggaaagctcgtc" "ttagaccactccgcatgtag" "ctgtggtacggctcaaacgg"
- ## SEQ-4 SEQ-5
- ## "ctcccgcctatctcccttct" "tcgcctagaaaaagtttcct"
- gsub("T", "U", DNA.set)
- ## SEQ-1 SEQ-2 SEQ-3
- ## "UCCGUAUUGGAAAGCUCGUC" "UUAGACCACUCCGCAUGUAG" "CUGUGGUACGGCUCAAACGG"
- ## SEQ-4 SEQ-5
- ## "CUCCCGCCUAUCUCCCUUCU" "UCGCCUAGAAAAAGUUUCCU"
三、序列截取(sequence subset)
1、使用序列构造函数
Biostrings的XXXSet类和Views类序列构造函数本身就具备序列subset的功能,Views类对象可以通过类型转换获得XXXSet类对象。具体使用方法请参看上一篇文章。
2、subseq函数
subseq函数可以用于序列截取,也可以对选定序列进行修改:
- DNAstr <- DNAString(rndSeq(DNA_BASES, 50))
- (subseq(DNAstr, start = 20, end = 30))
- ## 11-letter "DNAString" instance
- ## seq: CGTCCATCGAA
- # 上面语句的subseq函数仅仅是截取了序列,没有改变原序列
- DNAstr
- ## 50-letter "DNAString" instance
- ## seq: GGCCTGAACTGTGCCAAGACGTCCATCGAAGGAAGTGGGTGGGACGCAGA
- # 下面语句的subseq函数改变了原序列
- subseq(DNAstr, start = 20, end = 30) <- DNAString("NNN")
- DNAstr
- ## 42-letter "DNAString" instance
- ## seq: GGCCTGAACTGTGCCAAGANNNGGAAGTGGGTGGGACGCAGA
3、特殊序列查找和截取
回文(palindrome)序列相关的函数,有:
- findPalindromes(subject, min.armlength = 4, max.looplength = 1, min.looplength = 0,
- max.mismatch = 0)
- palindromeArmLength(x, max.mismatch = 0, ...)
- palindromeLeftArm(x, max.mismatch = 0, ...)
- palindromeRightArm(x, max.mismatch = 0, ...)
- findComplementedPalindromes(subject, min.armlength = 4, max.looplength = 1,
- min.looplength = 0, max.mismatch = 0)
- complementedPalindromeArmLength(x, max.mismatch = 0, ...)
- complementedPalindromeLeftArm(x, max.mismatch = 0, ...)
- complementedPalindromeRightArm(x, max.mismatch = 0, ...)
有应用需求的自己去看看函数说明吧。
四、字符或寡核苷酸组合的统计
1、letterFrequency函数
这个函数用于统计指定字符的频率或比例:
- letterFrequency(DNA.set, DNA_BASES)
- ## A C G T
- ## [1,] 4 5 5 6
- ## [2,] 5 6 4 5
- ## [3,] 4 5 7 4
- ## [4,] 1 11 1 7
- ## [5,] 6 5 3 6
- letterFrequency(DNA.set, DNA_ALPHABET)
- ## A C G T M R W S Y K V H D B N - +
- ## [1,] 4 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0
- ## [2,] 5 6 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0
- ## [3,] 4 5 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0
- ## [4,] 1 11 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0
- ## [5,] 6 5 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0
- letterFrequency(DNA.set, DNA_BASES, as.prob = TRUE)
- ## A C G T
- ## [1,] 0.20 0.25 0.25 0.30
- ## [2,] 0.25 0.30 0.20 0.25
- ## [3,] 0.20 0.25 0.35 0.20
- ## [4,] 0.05 0.55 0.05 0.35
- ## [5,] 0.30 0.25 0.15 0.30
- # 注意下面这种用法:
- letterFrequency(DNA.set, "GC", as.prob = TRUE)
- ## G|C
- ## [1,] 0.5
- ## [2,] 0.5
- ## [3,] 0.6
- ## [4,] 0.6
- ## [5,] 0.4
2、letterFrequencyInSlidingView函数
该函数按设置的窗口长度(view.width)一个个碱基滑动并统计字符频率或比例:
- letterFrequencyInSlidingView(DNA.set[[1]], view.width = 16, letter = DNA_BASES)
- ## A C G T
- ## [1,] 4 3 4 5
- ## [2,] 4 4 4 4
- ## [3,] 4 3 5 4
- ## [4,] 4 2 5 5
- ## [5,] 4 3 4 5
- letterFrequencyInSlidingView(DNA.set[[1]], 16, "GC", as.prob = TRUE)
- ## G|C
- ## [1,] 0.4375
- ## [2,] 0.5000
- ## [3,] 0.5000
- ## [4,] 0.4375
- ## [5,] 0.4375
3、alphabetFrequency函数
作用与letterFrequency函数类似,但按ALPHABET中的所有因子进行统计。baseOnly设置为TRUE可以对ALPHABET进行限制:
- alphabetFrequency(DNA.set)
- ## A C G T M R W S Y K V H D B N - +
- ## [1,] 4 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0
- ## [2,] 5 6 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0
- ## [3,] 4 5 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0
- ## [4,] 1 11 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0
- ## [5,] 6 5 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0
- alphabetFrequency(DNA.set, as.prob = TRUE, baseOnly = TRUE)
- ## A C G T other
- ## [1,] 0.20 0.25 0.25 0.30 0
- ## [2,] 0.25 0.30 0.20 0.25 0
- ## [3,] 0.20 0.25 0.35 0.20 0
- ## [4,] 0.05 0.55 0.05 0.35 0
- ## [5,] 0.30 0.25 0.15 0.30 0
4、寡核苷酸统计:
有以下函数,分别统计2核苷酸组合、3核苷酸组合和寡核苷酸组合:
dinucleotideFrequency
trinucleotideFrequency
oligonucleotideFrequency
五、杂项函数
包括使用序列对象进行运算的一些函数(和符号):
- # 反转对象元素的顺序,不是反转序列!
- rev(DNA.set)
- ## A DNAStringSet instance of length 5
- ## width seq names
- ## [1] 20 TCGCCTAGAAAAAGTTTCCT SEQ-5
- ## [2] 20 CTCCCGCCTATCTCCCTTCT SEQ-4
- ## [3] 20 CTGTGGTACGGCTCAAACGG SEQ-3
- ## [4] 20 TTAGACCACTCCGCATGTAG SEQ-2
- ## [5] 20 TCCGTATTGGAAAGCTCGTC SEQ-1
- # 判断两个对象是否相同
- DNA.set[[1]] == DNA.set[[2]]
- ## [1] FALSE
- # 判断对象是否包含在另外一个对象的元素中
- DNA.str %in% DNA.set
- ## [1] TRUE
Biostrings在2.0版后还添加了append函数,可以把几个序列集合合并,还可以使用c函数进行合并:
- append(DNA.set, DNAStringSet(DNA.str))
- ## A DNAStringSet instance of length 6
- ## width seq names
- ## [1] 20 TCCGTATTGGAAAGCTCGTC SEQ-1
- ## [2] 20 TTAGACCACTCCGCATGTAG SEQ-2
- ## [3] 20 CTGTGGTACGGCTCAAACGG SEQ-3
- ## [4] 20 CTCCCGCCTATCTCCCTTCT SEQ-4
- ## [5] 20 TCGCCTAGAAAAAGTTTCCT SEQ-5
- ## [6] 20 TCCGTATTGGAAAGCTCGTC
- c(DNA.set, DNAStringSet(DNA.str))
- ## A DNAStringSet instance of length 6
- ## width seq names
- ## [1] 20 TCCGTATTGGAAAGCTCGTC SEQ-1
- ## [2] 20 TTAGACCACTCCGCATGTAG SEQ-2
- ## [3] 20 CTGTGGTACGGCTCAAACGG SEQ-3
- ## [4] 20 CTCCCGCCTATCTCCCTTCT SEQ-4
- ## [5] 20 TCGCCTAGAAAAAGTTTCCT SEQ-5
- ## [6] 20 TCCGTATTGGAAAGCTCGTC
除以上列出的例子外还有duplicated, unique, sort, order, split, relist等。随着Biostrings的完善,可能会添加更多的函数,使序列的运算更符合R语言的运算习惯。
注:本文R语言的代码加亮显示由RStudio/knitr产生,使用R脚本对其产生的HTML代码进行解析后发布到本博客。
原文来自:http://blog.csdn.net/u014801157/article/details/24372455