一、BSgenome和BSgenome数据包
Bioconductor提供了某些物种的全基因组序列数据包,这些数据包是基于Biostrings构建的,称为BSgenome数据包。不同物种的BSgenome数据包都有类似的数据结构,可以用统一的方式进行处理。但是BSgenome数据包仅包含有数据,它们的处理的方法由另外一个软件包提供,即BSgenome包。
先安装BSgenome包(如果没有安装):
library(BiocInstaller) biocLite("BSgenome")
载入BSgenome包,并查看当前版本提供的BSgenome数据包:
library(BSgenome) (ag <- available.genomes()) ## [1] "BSgenome.Alyrata.JGI.v1" ## [2] "BSgenome.Amellifera.BeeBase.assembly4" ## [3] "BSgenome.Amellifera.UCSC.apiMel2" ## [4] "BSgenome.Athaliana.TAIR.04232008" ## [5] "BSgenome.Athaliana.TAIR.TAIR9" ## [6] "BSgenome.Btaurus.UCSC.bosTau3" ## [7] "BSgenome.Btaurus.UCSC.bosTau4" ## [8] "BSgenome.Btaurus.UCSC.bosTau6" ## [9] "BSgenome.Celegans.UCSC.ce10" ## [10] "BSgenome.Celegans.UCSC.ce2" ## [11] "BSgenome.Celegans.UCSC.ce6" ## [12] "BSgenome.Cfamiliaris.UCSC.canFam2" ## [13] "BSgenome.Cfamiliaris.UCSC.canFam3" ## [14] "BSgenome.Dmelanogaster.UCSC.dm2" ## [15] "BSgenome.Dmelanogaster.UCSC.dm3" ## [16] "BSgenome.Drerio.UCSC.danRer5" ## [17] "BSgenome.Drerio.UCSC.danRer6" ## [18] "BSgenome.Drerio.UCSC.danRer7" ## [19] "BSgenome.Ecoli.NCBI.20080805" ## [20] "BSgenome.Gaculeatus.UCSC.gasAcu1" ## [21] "BSgenome.Ggallus.UCSC.galGal3" ## [22] "BSgenome.Ggallus.UCSC.galGal4" ## [23] "BSgenome.Hsapiens.UCSC.hg17" ## [24] "BSgenome.Hsapiens.UCSC.hg18" ## [25] "BSgenome.Hsapiens.UCSC.hg19" ## [26] "BSgenome.Mmulatta.UCSC.rheMac2" ## [27] "BSgenome.Mmusculus.UCSC.mm10" ## [28] "BSgenome.Mmusculus.UCSC.mm8" ## [29] "BSgenome.Mmusculus.UCSC.mm9" ## [30] "BSgenome.Ptroglodytes.UCSC.panTro2" ## [31] "BSgenome.Ptroglodytes.UCSC.panTro3" ## [32] "BSgenome.Rnorvegicus.UCSC.rn4" ## [33] "BSgenome.Rnorvegicus.UCSC.rn5" ## [34] "BSgenome.Scerevisiae.UCSC.sacCer1" ## [35] "BSgenome.Scerevisiae.UCSC.sacCer2" ## [36] "BSgenome.Scerevisiae.UCSC.sacCer3" ## [37] "BSgenome.Tgondii.ToxoDB.7.0" # 当前版本提供了18个物种的37个基因组包 unique(gsub("BSgenome\\.([^\\.]+).*", "\\1", ag)) ## [1] "Alyrata" "Amellifera" "Athaliana" "Btaurus" ## [5] "Celegans" "Cfamiliaris" "Dmelanogaster" "Drerio" ## [9] "Ecoli" "Gaculeatus" "Ggallus" "Hsapiens" ## [13] "Mmulatta" "Mmusculus" "Ptroglodytes" "Rnorvegicus" ## [17] "Scerevisiae" "Tgondii"
获取拟南芥的BSgenome数据包(BSgenome.Athaliana.TAIR.TAIR9):
biocLite("BSgenome.Athaliana.TAIR.TAIR9")
载入BSgenome.Athaliana.TAIR.TAIR9包,查看数据信息:
library(BSgenome.Athaliana.TAIR.TAIR9) # BSgenome.Athaliana.TAIR.TAIR9只定义了一个对象 ls("package:BSgenome.Athaliana.TAIR.TAIR9") ## [1] "Athaliana" # 查看总体信息 Athaliana ## Arabidopsis genome ## | ## | organism: Arabidopsis thaliana (Arabidopsis) ## | provider: TAIR ## | provider version: TAIR9 ## | release date: June 9, 2009 ## | release name: TAIR9 Genome Release ## | ## | sequences (see '?seqnames'): ## | Chr1 Chr2 Chr3 Chr4 Chr5 ChrM ChrC ## | ## | (use the '$' or '[[' operator to access a given sequence) # 不载入序列就可以获取染色体名称和长度信息 seqnames(Athaliana) ## [1] "Chr1" "Chr2" "Chr3" "Chr4" "Chr5" "ChrM" "ChrC" seqlengths(Athaliana) ## Chr1 Chr2 Chr3 Chr4 Chr5 ChrM ChrC ## 30427671 19698289 23459830 18585056 26975502 366924 154478
二、BSgenome方法
BSgenome数据包内包含的序列为DNAString,DNAStringSet或MaskedDNAString对象,完全可以使用Biostrings包的方法进行处理:
# 可以使用多种方式获取某一序列 Athaliana$Chr1 ## 30427671-letter "DNAString" instance ## seq: CCCTAAACCCTAAACCCTAAACCCTAAACCTCTG...TAGGGTTTAGGGTTTAGGGTTTAGGGTTTAGGG Athaliana[[1]] ## 30427671-letter "DNAString" instance ## seq: CCCTAAACCCTAAACCCTAAACCCTAAACCTCTG...TAGGGTTTAGGGTTTAGGGTTTAGGGTTTAGGG Athaliana[["Chr1"]] ## 30427671-letter "DNAString" instance ## seq: CCCTAAACCCTAAACCCTAAACCCTAAACCTCTG...TAGGGTTTAGGGTTTAGGGTTTAGGGTTTAGGG
下面使用sapply函数统计碱基组成和GC含量。如果不熟悉sapply函数,请参考这篇文章。
# 统计碱基组成 sapply(seqnames(Athaliana), function(x) alphabetFrequency(Athaliana[[x]])) ## Chr1 Chr2 Chr3 Chr4 Chr5 ChrM ChrC ## A 9709674 6315641 7484757 5940546 8621974 102464 48546 ## C 5435374 3542973 4258333 3371349 4832253 82661 28496 ## G 5421151 3520766 4262704 3356091 4858759 81609 27570 ## T 9697113 6316348 7448059 5914038 8652238 100190 49866 ## M 76 5 2 1 0 0 0 ## R 36 7 4 0 0 0 0 ## W 124 18 2 0 0 0 0 ## S 30 3 1 0 0 0 0 ## Y 82 12 2 0 0 0 0 ## K 53 10 0 0 0 0 0 ## V 0 0 0 0 0 0 0 ## H 0 0 0 0 0 0 0 ## D 0 0 0 1 0 0 0 ## B 0 0 0 0 0 0 0 ## N 163958 2506 5966 3030 10278 0 0 ## - 0 0 0 0 0 0 0 ## + 0 0 0 0 0 0 0 # 计算GC含量 sapply(seqnames(Athaliana), function(x) letterFrequency(Athaliana[[x]], letters = "GC", as.prob = TRUE)) ## Chr1.G|C Chr2.G|C Chr3.G|C Chr4.G|C Chr5.G|C ChrM.G|C ChrC.G|C ## 0.3568 0.3586 0.3632 0.3620 0.3593 0.4477 0.3629
但是BSgenome包试图提供一些简便的方法来处理基因组水平的BSgenome类数据,例如类似于apply函数的bsapply函数。要使用bsapply函数得先构建BSParams类对象,用于设置以下参数:
- X:将要处理的BSgenome对象
- FUN:将要对X中每条染色体进行处理函数
- exclude:字符向量,表示排除的染色体名称
- simplify:逻辑向量,它的意义和与sapply的simplify参数一样。默认为FALSE,bsapply返回GenomeData类数据;如果设置为TRUE,函数的结果尽量使用表格(数据框)类型显示
- maskList:逻辑向量,表示各染色体使用掩膜的应用状态
- motifList:字符向量,对序列进行掩膜的motif
- userMask:RangesList对象,每个元素将用于对响应染色体进行掩膜处理,为用户提供额外的掩膜。
- invertUserMask:TRUE/FALSE,表示是否对userMask进行反转。
FUN函数的其他参数可以在bsapply函数中以有名参数的方式进行设置。 下面代码的作用和前面sapply函数的应用是相同的:
op <- options() options(digits = 4) params <- new("BSParams", X = Athaliana, FUN = letterFrequency, simplify = TRUE) bsapply(params, letters = "GC", as.prob = TRUE) ## Chr1.G|C Chr2.G|C Chr3.G|C Chr4.G|C Chr5.G|C ChrM.G|C ChrC.G|C ## 0.3568 0.3586 0.3632 0.3620 0.3593 0.4477 0.3629 BSParams是S4类,对象数据可以修改,方便重复使用: params@motifList <- "N" bsapply(params, letters = "GC", as.prob = TRUE) ## Chr1.G|C Chr2.G|C Chr3.G|C Chr4.G|C Chr5.G|C ChrM.G|C ChrC.G|C ## 0.3587 0.3586 0.3633 0.3620 0.3594 0.4477 0.3629 options(op) params@FUN <- alphabetFrequency bsapply(params, baseOnly = TRUE) ## Chr1 Chr2 Chr3 Chr4 Chr5 ChrM ChrC ## A 9709674 6315641 7484757 5940546 8621974 102464 48546 ## C 5435374 3542973 4258333 3371349 4832253 82661 28496 ## G 5421151 3520766 4262704 3356091 4858759 81609 27570 ## T 9697113 6316348 7448059 5914038 8652238 100190 49866 ## other 401 55 11 2 0 0 0
BSgenome包实现了BSgenome类对象的matchPWM,countPWM,vmatchPattern,vcountPattern,vmatchPDict和vcountPDict等操作,除继承了Biostrings中相应的方法外还增加了一些针对BSgenome类对象的参数设置(和bsapply函数参数类似):
vmatchPattern("ACGTGKC", Athaliana, fix = "subject", exclude = c("ChrC", "ChrM")) ## GRanges with 13745 ranges and 0 metadata columns: ## seqnames ranges strand ## ## [1] Chr1 [ 1540, 1546] + ## [2] Chr1 [ 8276, 8282] + ## [3] Chr1 [12017, 12023] + ## [4] Chr1 [14697, 14703] + ## [5] Chr1 [34225, 34231] + ## ... ... ... ... ## [13741] Chr5 [26911361, 26911367] - ## [13742] Chr5 [26915247, 26915253] - ## [13743] Chr5 [26917155, 26917161] - ## [13744] Chr5 [26923565, 26923571] - ## [13745] Chr5 [26933617, 26933623] - ## --- ## seqlengths: ## Chr1 Chr2 Chr3 Chr4 Chr5 ChrM ChrC ## 30427671 19698289 23459830 18585056 26975502 366924 154478
BSgenome包还提供了其他一些方法,比如用户自行构建BSgenome数据包和SNP的处理等。这些不在我的关心范围之内,没去了解。
原文来自:http://blog.csdn.net/u014801157/article/details/24372467